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ON THE CORRELATION FUNCTIONS IN TIME AND SPACE 

OF WIND-GENERATED OCEAN WAVES 

By 

Jan Geert de Boer 

ABSTRACT 

When wind-generated ocean surface waves are described statistically 

by means of a wave energy spectrum, the correlation function for 

the surface elevation at two points and two instants of time 

follows as an integral over the wave spectrum.  The time- 

correlation function and the spatial-correlation function, 

which are important for the statistical description of an 

underwater sound field scattered from the sea surface, follow 

from this integral as special cases.  They are examined here 

for two proposed spectra for fully-developed seas — the Neumann 

and the Pierson-Moskowitz spectra — by numerical integration. 

It is shown that the spatial-correlation function, although 

a function of two variables, can be expressed in terms of two 

functions of only one variable each, when a cosine-squared 

law for the directionality of the wave spectrum is assumed. 

These functions are tabulated and plotted,  A very simple 

relation is sufficient to reconstruct the entire anisotropic 

spatial correlation function from these basic functions. 
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INTRODUCTION 

The subject of scattering and reflection of sound waves from 

rough boundaries, such as the sea surface, has received increasing 

interest in the past fifteen years.  Many models, both of 

deterministic and random character, have been proposed to 

describe the scattering phenomenon.  A detailed discussion of 

the existing literature can be found in Ref. 1. 

The elevation and slopes of the sea surface are random processes 

in time and space.  Consequently, a realistic description of 

the scattered sound field must also be stochastic in nature. 

Statistical quantities such as mean value, covariance and 

correlation are hence of interest; and, as they involve the 

statistics of the sea surface, knowledge of this boundary 

is required. 

If the statistical description of the scattered field is limited 

to first and second moments, the sea surface is sufficiently 

characterized by mean value and covariance.  Moreover, if the 

mean value is made zero, which can be done without loss of 

generality (the mean level does not change in the time interval 

that is typical for an acoustical experiment), it is only the 

correlation function of the surface that has to be known. 

The most realistic way to obtain this correlation function is 

by using the (Neumann) theory of the surface wave spectrum for 

a fully-developed sea.  This spectrum and the correlation function 

are related via the familiar Fourier transform. 

Several formulae have been proposed for the spectrum of 

wind-generated ocean waves in a fully-developed sea.  It is the 

aim of this report to compute the time-correlation function and 



the spatial-correlation function for the two spectra proposed by 

Neumann  and by Pierson and Moskowitz.  It should be noted 

that the Neumann spectrum has now been discredited on both 

theoretical and experimental grounds, but it is included 

here for comparison and because it is so commonly referred to 

in the existing acoustic literature on scattering from the 

sea surface. 



1.   STATISTICS OF THE OCEAN SURFACE 

1.1  Introductory 

When wind is blowing over the surface of the sea, a very 

complicated mechanism of interaction between air and water causes 

the formation of surface waves.  Many studies have been made to 

investigate this phenomenon, and many models have been proposed 

to describe it.  But a description that covers all aspects 

is not yet available. 

Attempts have been made to characterize the sea surface with 

only one parameter, especially the wind speed.  But the time 

during which a certain constant wind has been blowing (the 

"duration") and the size of the area over which it has been 

blowing (the "fetch") also play an important role.  This has 

lead to the concept of a "fully-developed sea", over which the 

wind speed and direction have been constant long enough for 

the wave system to contain the maximum amount of energy 

it can possibly have:  an equilibrium has been reached.  Clearly, 

this is only a theoretical construction:  winds of constant 

speed and direction do not last very long, certainly not in 

large areas.  Nevertheless, the idea of a "fully-aroused sea" 

has produced useful results. 

A very good introduction to the subject is given by Kinsman 

[Ref. 2].  More recent insights are presented by Phillips [Ref. 3]. 

Both authors point out that the sea surface is a random process, 

in space as well as time.  This process,  z = §(x, t), is not 

Gaussian (there is a certain skewness of the waves, and waves 

of infinite height have zero probability), but in many respects 

it may be considered as "quasi-Gaussian", as measurements have 

indicated. 



In its most general form the second moment of the process is 

the correlation function 

F = E [ C(xa, tx)  C(xa, t2)] . [Eq. i] 

In principle it depends on the position of the points of 

observation and on the observation times.  But the assumption 

that the sea surface is homogeneous (at least in the area where 

an experiment takes place) and stationary (at least for the 

duration of an experiment) reduces the correlation function to 

a function of only space differences and time differences: 

E[C(xi,tl)C(xs,ts)] 5E[£(xi,ti)C(xi+ p, tx+ T)] 

- F(P, T) , 

[Eq. 2] 

where 

p = xg - x    and   T = tg - t^  . [Eq. 3 ] 

In the past it has sometimes been assumed that the spatial- 

correlation function of the sea surface had the shape of a 

Gaussian curve, but this assumption has turned out to be incorrect 

and unsatisfactorily.  "The most realistic way to incorporate 

the correlation function of surface height and slopes is via 

the theory of the surface wave spectrum" [Ref. 1, p.91]« 

According to this theory the sea surface is considered as the 

combined effect of a large band of sinusoidal surface waves that 

travel over the surface in very many directions, each having its 

own speed and hence its own wave number.  In this way the idea 

of a surface wave energy spectrum has been formed. 

Many waves travel in the direction of the mean wind.  But waves 

are also generated sideways, at least in the angular interval 

(-TT/2, TT/2), and may be even in an interval  (-TT, TT) , because of 

non-linear wave interactions.  It can be said, however, that 

waves are generally strongest in the down-wind direction.  Hence 

the sea surface is anisotropic, and the wave spectrum depends 



not only on frequency or wave number, but also on direction. 

1.2  Relations Between Surface Correlation Functions 
and Wave Spectra 

In its most general form the surface correlation function deals 

with the surface elevation at two different points and at two 

different instants of time.  Other correlation functions can be 

derived from it by taking the time difference equal to zero, 

by considering coinciding points, or by assuming the surface 

to be isotropic.  For each correlation function obtained in 

this way a corresponding spectral function can be defined via 

a Fourier transform relation.  These relations are discussed 

in detail in Refs. 2 and 3« 

Returning to Eq. 2, we normalize  F: 

F(p, T) = h
3N (p, T), [Eq. 4] 

h2 = F(0,0) ; [Eq. 5] 

the vector  p  has components %     and r\,    in the  X   and  X 

directions respectively. 

The correlation function  N(p, T)  is the three-dimensional 

Fourier transform of the most general wave spectrum  Y(K, Q) , 

a function of both wave number and frequency: 

oo       oo 

h2N(p, T)=  |dK    da' Y(£, o')exp[i(K-"p- a' T)] • [Eq. 6] 

— 00 

For small-amplitude, deep-water waves there is a unique relation 

between the wave number and the frequency! the dispersion 

relation 

K = a2/g • [Eq. 7] 



This implies [Refs. 2 and 3] that 

Y(K, a') = y(K) fi(a- a') , [Eq. 8] 

so that 

h2N(p, T) =   dK Y(K) exp[K-p - gT)] [Eq. 9] 

follows.  With polar coordinates (K, 6)  and again the dispersion 

relation, we then find 

TT 

h2N(?, n)= F  d9 r da 22-  [Y(K, 6)] 
J-TT     J0     g2 K=a2/g 

exp i-2- (§cos 0 + 
L. g 

n sin 9)-iCTT • [Eq. 10] 

Putting 

>(a, 9) = ^ [Y(K, e)] 
g2        K=a2/g 

[Eq. 11] 

into Eq. 10, and realizing that  N  is a real function, we get 

finally: 

N(S,n, T) = (2h2) 
-1  pTT 

2\     I 

J_n de da $( a, 9)cos — ( 5 cos 0 + n si 
r5 

n 0)-aT • 

[Eq. 12] 

This formula is the starting point for our calculations.  It may 

be compared with Ref. 2[p,378, Eq.(8.3:3)]. 

The spectral function  $(a, 9)  is non-negative over the entire 

( a> 0) -plane.  The integral 

'2        a2 

d8 I  da §(a, 9) 
J9,    V 

[Eq. 13] 



gives a measure of the energy in the wave field having frequencies 

between  gt  and n  ,   and travelling in directions between  0 

and  9 .  If we integrate the spectrum over the whole (Q, 0)-plane, 

we have an estimate of the total energy in the wave field: 

TT oo 

=  |  d0  f  da $(o, 9) . [Eq. 14] 
TT 

d0 
"--TT      ^ 0 

1.3  The Sea-Surface Roughness Spectra 

Most oceanographic literature about the surface wave spectra 

deals with the function  §( a) , rathern than with  §( a, 0). 

They are related as follows: 

Ho) = 
TT 

d0 He, 9) . [Eq. 15] 
-TT 

When  $( a)  is given and  $( 0, 9)  is needed, an inverse relation 

is required. 

There is some disagreement in the literature about the explicit 

form of the function  $(a).  Part of the discrepancies can be 

explained if we realize that the measurements on which the 

empirical formulae for  §( a)  are based have not all been made 

in seas with the same state of development  [Ref. 1, p.88-89]. 

A formerly-used estimate for the functional form of  $(a) is: 

He)   = j  C a-6 exP(-2g
2 a-2 u~3 ) , [Eq. 16] 

where  C = 3-05 m2/s\  This is the Neumann spectrum, usually 

called  A2(a) [see Ref. 2,   p. 389].  Its anisotropic version is 

given by Pierson, Neumann and James [see Ref. 2, p.399]: 

$(0,8) =A
2(a,8) = C a-6 exP(-2g

2 a"2 U~2) cos2 9 

for a. < a < », I 9 I <.-* , 

=  0, otherwise. [Eq. 17] 



Comparison between Eqs. 16 and 17 yields a relation between the 

anisotropic spectrum and its reduced form, which will also be 

used for other spectra: 

2 
H CT, e) = — $( a) cos2 0     l°l  <s a < °° 

[Eq. 18] 
| 0| STT/2 

0, otherwise" 

Another spectral function is mentioned by Schulkin [Ref. 4] 

it has a sharp low-frequency cut off: 

2 ...,.,*    a A  „    i .i   TT Y(K, 0) = - Y(K) COS'6  for   0| s •» 
IT '    ^ 

= 0 for  |6| > I [Eq. 19] 
with 

o 

2TT 
Y(K)    I    d0 Y(K, 0) [Eq. 20] 

[Eq. 21] 
= BK~*  for  |K| sgU 

,-2 = 0     for  |K| <gU' 

this is the Burling-Phillips spectrum. 

— 2 
The dimensionless constant  B  equals 0.46 X 10    according to 

 g 
Schulkin,    and     0.6 x10        according  to   Phillips   [Ref.    3]• 

The   expression   for      $(a),    as   given  by   Neumann   [Eq.    16],    is   most 

often  met   in  the   literature.      But   its   asymptotic  behaviour   at 

high   frequencies,    showing   a   proportionality  with      a     ,   has   been 

Cox and Munk,   and Wong,   have found from ratios of up-wind to cross-wind 
mean  square slopes that the cosine-squared law is too narrow    to describe 
the directionality  of  the  wind waves  (see Ref„   4,   pc17)»     We note  in  passing 
that the quantity  "mean-square  slope"  is an  important measure of sea surface 
roughness;   it  includes the roughness contribution of the  small  wave patches 
riding atop    the  large  sea waves,   which are  important  for acoustics and 
radaro 

10 



proved wrong.  Pierson and Moskowitz [Ref. 5] gave arguments in 

favour of a  a   behaviour.  They stated that "within the present 

limitation of data, the spectrums of fully developed wind-generated 

seas for winds measured at 19.5 metres are given very nearly by" 

[Ref. 5, p.5190]: 

$( a)   = ag2 a  exp [Eq. 22] 

-3 
with  a = 8.10 X 10~ ,  0 = 0.74  and   0     =  g/U, where  U  is 

o 
the wind speed reported by the weather ships. 

A formula in which the wind speed does not appear, and that also 

has  a high-frequency behaviour of the typ 

by Phillips [Ref. 3]•  He gave the formula 

has  a high-frequency behaviour of the type  a  , has been suggested 

$(a) = C g2 a-5 , [Eq. 23] 

where  C! =1.2 X10  , a dimensionless constant,  that varies 

slightly with fetch. 

In this report we will concentrate on two spectra, both proposed 

for a fully-aroused sea, namely the spectra given in Eq. 16 

(Neumann) and Eq. 22 (Pierson-Moskowitz).  Since the anisotropic 

version is required, we will also apply Eq. 18, with a.  =0. 

The frequencies  OU, at which the energy spectra reach their 

maximum, and the maxima themselves, can be found easily.  We have: 

a)  Neumann Spectrum 

aM = § J~VT  = 0.816 £ ,        , [Eq. 24] 

§(aM) = f U
6 • [Eq. 25] 

11 



b)     Pierson-Moskowitz   Spectrum 

°M  =U   ($f  =  ^-877f [Eq.   26] 

*((^)   =   f U5  . [Eq.    27] 

We see that with increasing wind speed 0       decreases and  §(Ovi) 

increases.  For the surface wave spectrum this means more low 

frequencies and so a larger correlation distance. 

A fully-developed sea for a fixed wind speed  U  is one whose 

spectrum contains components of all frequencies  0 ^ a < 00 , 

each with the maximum energy of which it is capable under the 

given wind.  The total energy in such a sea is [cf Eqs. 14 and 15] 

E =     da Ha)   =   2h2 . [Eq. 28] 

So we get for the spectra under study: 

a)  Neumann Spectrum 

3 C (l)3 2 (4)5 > [Eq' 29] E = 

b)  Pierson-Moskowitz Spectrum 

Details of the calculation can be found in Appendix A. 

12 



2.  THE SURFACE CORRELATION FUNCTIONS IN TIME AND SPACE 

The foregoing discussion of the surface wave spectra, and the 

relation between the directional spectrum and its reduced form, 

enable us to rewrite the formula for the surface correlation 

function  N(p, T) .  From Eqs. 12 and 18, with  a, =0, we obtain 

TT/2 _> P TV L       rf° 
h2N(p,T)=- d9     dCT $(a)cos2ecoj 

n  -V2       JB 

— ( ^cos 0 + nsin0)-aT [Eq. 31] 

The normalized time-correlation function  N(0,T), and the 

normalized spatial-correlation function  N(p, 0) follow immediately 

from this expression.  They will be calculated in the following 

sections. 

For computational reasons we bring Eq. 31 into a more convenient 

form:  we divide by  h2, change the order of integration, and 

separate the variables in the argument of the second cosine 

function.  Then we get: 

N(p, T)=(TTh2) 
-1 

"— o 

P°° -»    P" -» da §( a) cos( OT)I1( a, p)
+  da $( a)sin( aT)l2 ( a, p) 

° [Eq. 32] 

with 

-»    Pn/2 
I1(a, p)=     de cos

2 6 cos 
-TT/2 

g 
( §cos8+ T) sin 9) [Eq. 33a] 

l.(o,p)- r1 TT/2 

-TT/2 

d9 cos2 9 sin 
a 
  (, §cos9+ Tl sin 9) [Eq. 33b] 

We may note in passing that  h2  can be calculated with Eq. 28: 

n oo 

h2 = i    da 
J 

4(a) = *E , [Eq. 34] 

13 



an expression that follows also from Eq. 31 by putting  5=n = 0, 

and  T=0.  The quantities  E  for the Neumann spectrum and 

the Pierson-Moskowitz spectrum are given in Eqs. 29 and 30, 

respectively.  Hence we find for  h2: 

a)  Neumann Spectrum 

1     rr    3/2 TI  5 h2 =IC^)   (^) t**.   35] 

with  C = 3-05; 

b)  Pierson-Moskowitz Spectrum 

h- = Zf-  (£)\ [Eq. 36] 

with a = 8.10 xio 3,  0 = 0.74- 

14 



3.    THE TIME-CORRELATION FUNCTION 

3.1   Introductory 

The correlation function  N(p, T) given in Eq. 32 is too general 

for a detailed analysis.  In this section we want to study its 

behaviour as a time-correlation function.  Experimentally, this 

function could be obtained by observing the wave pattern at 

only one point, but for a long time.  The time record from a 

shipborne wave height meter, or from a wavepole [both giving an 

estimate of  £(t)J  could serve as the raw data.  The 

function  N(0,T)  could then be calculated approximately with 

the formula 

i rto+T 

to 

From the theoretical side, as is our concern in this report, 

N(0,T) for a fully-developed sea follows from Eqs. 32 and 33 by 
-• 

setting  p = 0, i.e.  ^ = T| = 0.  We then have 

GO 

N(0,T) = (nhs)_1  I  do $(o) cos(aT) Xl(o,0) , [Eq. 38] 
0 

with 

oTT/2 
l1(a,0)   = dScos2   9. [Eq.    39] 

-TT/2 

But the integral  I   is easily evaluated; its value is  TT/2. 

And so we have finally 

-1  P00 
N(0,T) = (2h3)       do l(o) COS(OT) , [Eq. 40] 

J 
0 

which says that  N(0,T)  is the Fourier cosine transform of  $(c). 

15 



3.2   The Neumann Spectrum 

In Eq. 40 we have to substitute the energy spectrum given by 

Eq. 16, and the value for  h2  from Eq. 35-  The final result can 

be written in a more convenient form if we introduce the 

variable 

U2as 

and normalize the time delay  T  by: 

[Eq. 41] 

T
N = T/U. 

We note in passing that a similar normalization can be 

found in Ref. 5. 

With these modifications we get: 

[Eq. 42] 

N(0,O=-4  f dz z 32 exp(-I) cos (g^/2 v^ TN) . 
3v^" J

0 
Z 

[Eq. 43] 

Clearly the wind speed  U  does not influence the shape of the 

curve, but only the time scale. 

Unfortunately, we have not been able to solve this integral 

analytically.  Hence, a numerical integration has been performed. 

The result is plotted in Fig. 1. 
1'°  ->.N(0,TN) 

  Neumann Spectrum 

  Pierson-Moskowitz Spectrum 

  Difference 0.5 - 

0 

-0.5 _ 

// NORMALIZED TIME DELAY 

/ 

v' 
FIG. 1    TIME CORRELATION FUNCTION OF WIND-GENERATED OCEAN SURFACE WAVES 

The normalized t me equals   U       t'mes the actual t'me 

L6 



It should be noted that, although  N(0,T)  and  $(a)  are related 

via the familiar Fourier cosine transform [Eq. 40], common 

numerical techniques such as the fast Fourier transform (FFT) 

cannot be used.  This is because the FFT requires an equidistant 

sampling of  $(o),   which is not suitable for this function since 

it has a steep rising part (0 <. O <. n)      and a very slowly 

descending part  ( (X, £ a < ») , 

3.3  The Pierson-Moskowitz Spectrum 

In this case the spectrum of Eq. 22 and h2  of Eq. 36 have to be 

substituted into Eq. 40.  This time we change from  g  to the 

variable 

z = 0(ao/a)
4; [Eq. 44] 

the result is 

poo ,        A 
N(0,TN)=j   dz exp(-z) cos (0* g TN z"4 ) , [Eq. 45] 

again with  T  = T/U.  This integral has also been approximated 

numerically.  The result is presented in Fig. 1, together with 

its deviation from the Neumann curve. 

3.4  Discussion 

In Ref. 6, Latta and Bailie used very sophisticated mathematical 

techniques to calculate analytically the Fourier cosine transform 

of the energy spectrum [see Eq. 40] for the Neumann and the 

Pierson-Moskowitz spectra.  The resulting formulae are so 

complicated, however, that they also had to use a computer for 

the final evaluation of the function  N(0,T).  Figure 2 shows 

a copy of their curves, for comparison with Fig. 1; it also 

includes a curve found by Bendat [Ref. 7]> for the Pierson- 

Moskowitz spectrum. 

17 



SSL 

mStN-MOSKOMU 
'{wimB-125 by Hired numerical 

integration mrtz.\ 

A 
/Ncutwm 

{from [q 18) 

a   «    is    n a 

FIG. 2 TIME AUTO-CORRELATION FUNCTIONS ON A NORMALIZED SCALE ( From Ref 6) 

Unfortunately, Latta and Bailie plotted their results on a 

normalized time scale, without giving explicitly the normalization 

factor, so that a quantitative comparison between their curves 

and ours becomes quite difficult. 

The first thing we notice, when comparing Figs. 1 and 2, is that 

if we multiply our time scale by ten, our PM-curve is in good 

agreement with that of Bendat, who used a very simple integrating 

routine.  Because the Latta-Bailie curve is only slightly 

different (their result is probably more accurate, since their 

calculation is far more rigorous than Bendat's and ours), we 

might conclude that they have normalized the time scale in 

accordance with  Ref. 5 [p.518 2], i.e. using  TN = gT/U. 

However this would include a normalized frequency  0) = —-  and 

Eq. 22 would then change into (in the notation of Ref. 6) 

|(tu) = AB UJ 5 exp(-Buj  ) , [Eq. 46] 

with 

. _ a IT B = p = 0.74 . [Eq. 47] 

Nevertheless, Fig. 2 gives the value  B = 1.25.  Hence,  TN-gT"/U, 

T/VU  with  y = 0.10 20, does not seem to be the or N 

18 



normalization formula used, but it is very close to it.  Indeed, 

if we solve the equation 

0(^)* =  Buf* [Eq. 48] 

we obtain 

1 

W = (f)* ^ , [Eq. 49] 

and with  B = 1.25,  g = 0.74  and  g = 9.81  this gives 

UO = y\Jc , A = Y -| — , [Eq. 50] 
0 g2 

with  y = 0.1165.  Figures 1 and 2 can hence be compared if 

we multiply our scale by  Y   =8.6.  A difference between the 

curves from the Neumann spectrum is then apparent, and this 

discrepancy is hard to explain, because of lack of information. 

First we note that Latta and Bailie have also normalized the 

Neumann-spectrum [Eq. 16]; they wrote 

S(uo) = Kuf6 exp(-AU)2) . [Eq. 51] 

The parameter  A  has not been defined.  With  U) = yUG     we would 

get 
i 

A = 2Y
2g2= 2(Br)

2 , [Eq. 52] 

which is not in agreement with Eq. 50.  This leads us to the 

conclusion that the symbol  A  has been used for two completely 

different quantities. 

In the final formula for  N(0,T), calculated for the Neumann-spectrum 

[Ref. 6], the parameter  A  appears again, as it should: 

n 
/   1vii/n-l\/n-3\    .2   _n 

R =» (-1)     (-S-M^T^)    A       T 
N(O,T)=-| V^  £ —  . [Eq.   53] 

n=0       r(n+i) r (Si-1) 
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Nevertheless, in Fig. 2 a curve is plotted without a value 

assigned to  A. 

For all these reasons we shall not attempt a quantitative comparison 

between Figs. 1 and 2, as far as the Neumann curve is concerned. 

We only conclude that the curves show a similar behaviour. 

The fact that the time scale in Fig. 1 could be normalized by 

dividing the real time delay by the wind speed is very interesting. 

It means that a fully-developed sea does not change its shape, but 

only its scale, when the wind speed is changed and a new 

equilibrium has been reached.  The whole wave pattern, in a 

statistical sense, is stretched when the wind speed increases 

and contracted when it decreases.     A fetch of infinite 

length and a constant wind of infinite duration are essential 

for this interpretation. 
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4- THE   SPACE-CORRELATION   FUNCTION 

4.1   Introductory 

When sound waves are scattered from the sea surface not one point, 

but a whole surface area, is involved.  This explains why the 

spatial-correlation function  N(p, 0)  is important for the 

description of the scattered sound field.  In fact, its 

importance is far greater than that of  N(0,T). 

Experimentally  N(p, 0) is hard to obtain.  In principle, its 

calculation requires the surface elevation in a large area, at 

one instant of time, i.e. £(x, t)  for  t = t0  and  x  ranging 

through a certain area  A  large enough to include the 

biggest  p  of interest.  Given this information,  N(p, 0)  could 

then be computed with the formula 

N(p,0)=i jjdx C(x,t0) £(x+lp\ t0) . [Eq. 54] 

An approximation made using a set of sample positions  x.  .  is 
1 > J 

also possible: 

P Q 
N(P/ m>0)~^ E T     C(*i 1'*0>  £(*i+r i+m' fco) » [Eq- "I 

where a.        = x.•. ..  - x.  . .   This would require  PQ  wave-height H£,m    i+£,j+m    1,3 MX 

meters, whose positions are fixed and well known, and a synchronous 

recording of their readings.  Such an experiment is hard to 

imagine. 

More promising seems the optical method described by Stilwell 

[Ref. 8], in which the sea surface is illuminated by a "continuous 

skylight"  and recorded photographically.  Such a record indeed 
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represents a continuous surface area at one instant of time.  The 

data processing is quite simple.  "By the use of optical analysis 

it is possible to resolve the variations of density in the 

surface.  When a transparency of a surface photograph is placed 

in one focal plane of a lens, the Fourier transform of the 

variations appear as light amplitude in the other focal plane. 

This information, in addition to the height and aspect angle of the 

camera, allows the energy spectrum of the surface to be 

obtained".  [Ref. 8, Abstract]. 

When the surface wave spectrum is given, as in our case,  N(p,0) 

can be calculated from Eqs. 32 and 33   by taking  T 
= 0.  Doing 

so we get 

_1      CO 

N(p,0) = (rrh2)      dCT *(a) ll{a,   p) [Eq. 56] 
o 

with 
TT/2 

it(o,^) = dfl cos 6COJ 

-TT/2 
g 

( ?cos 6 + rjsin 8) [Eq. 57] 

The integral  Ix  can be expressed in terms of Bessel functions 

[see Appendix B for details]: 

Ij ( aj P)= Trp~ 

-1 

SaJ0<P%-) + <n
a-5a)(p-%-)  Jx(p^-) g g g 

[Eq. 58] 

4 . 2  The Neumann Spectrum 

In Eq. 56 we substitute Eqs. 58, 16 and 35-  Moreover, we introduce 

a normalized correlation distance  p , with components  i* 

and r^,   by using the relation [cf   Ref. 5j p.5182]: 

IN  u2 

and change the variable  a  by taking, as in Sect. 3.2 

[Eq. 59] 

2T12 
Z = 

2g: 
[Eq. 60] 
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Then the correlation function  N(p, 0)  can be written in 

Cartesian coordinates (with  p.. = (/?N
2 + TV?) , as: 

N(eN, 1^,0) = p. N"
2
 P>N > + <V~ %'>*.<*> [Eq. 61] 

or   in   polar   coordinates   ( ?w 
= PN cos cp,    TV = p*, sin cp)   as: 

N( pN,  Cp,  0)   =   cos2 CpK1( pN) + (sin2Cp- cos2cp) Ks ( p^)  , 

where 

Ka(pN) = -^—  r" dz e~1/z   z~7/2  Jn(pXTz) 
3 J~^ °^pN 

[Eq. 62] 

[Eq, 63a] 

MPJ " s VKN 3 J~rr J 
P°°     -1/z , -7/2  Jl(pNz) 

dz e 
(pN

z) 
[Eq. 63b] 

The functions  K  and  Kg  have been calculated numerically, on a 

digital computer (Elliott 503), and are plotted in Fig. 3»  For 

later use their sample values are given in Table 1.  The fact 

that they are one-dimensional simplifies the calculation of the 

two-dimensional function  N(l* , rv,, 0) considerably:  we only 

need to read the values of  K   and  Kp into the computer, 

after which Eqs. 61 or 62 enables us to compute any value of 

the surface  N(^J, TV., 0).  Moreover,  N is symmetric with 

respect to the diagonal %^   = TV' 

N(?N, TTJJ, 0) = N(V ?N, 0); [Eq. 64] 

this halves the number of samples to be computed. 

In Fig, 4 we have plotted the correlation function  N(^„, TV, 0) 

for the Neumann spectrum.  The scales are normalized by 

using Eq. 59. 
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2.0 

    Ka(x) 

1.0 

Ka(x) 

30 

NORMALIZED  CORRELATION   DISTANCE 

FIG. 3    THE FUNCTIONS  Ki(x)   AND  K2(x) 

TABLE!    SAMPLE VALUES OF   K]   AND  K2 

40 

X Ka(x) Ka(x) 

0 2.000000 1.000000 

1 1.723824 0.922369 
2 1.295799 0.788175 
3 0.902805 0.650454 
4 0.585233 0.525517 
S 0.344280 0.418094 
6 0.169415 0.328420 
7 0.047631 0.254962 
8 -0.033259 0.195599 
9 -0.083592 0.148139 

10 -0.111697 0.110546 

11 -0.124076 0.081028 
12 -0.125690 0.058053 
13 -0.120249 0.040338 
14 -0.110477 0.026820 
15 -0.098337 0.016631 
16 -0.085208 0.009063 
17 -0.072035 0.003545 
18 -0.059438 -0.000382 
19 -0.047799 -0.003083 
20 -0.037332 -0.004850 

21 -O .0281 27 -0.005914 
22 -0.020191 -0.006456 
23 -0.013475 -0.006618 
24 -0.007892 -0.006509 
25 -0.003340 -0.006215 
26 0.000295 -0.005800 
27 0.003128 -0.00 5314 
28 0.005268 -0.004792 
29 0.006819 -0.004260 
30 0.007875 -0.003739 

31 0.008521 -0.003240 
32 0.008834 -0.002773 
33 0.008882 -0.002343 
34 0.008723 -0.001931 
35 0.008408 -0.001600 
36 0.007978 -0.001288 
37 0.007468 -0.001013 
38 0.006905 -0.000774 
39 0.006314 -0.000567 
40 0.005712 -0.000391 
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4.3  The Pierson-Moskowitz Spectrum 

Now the variable  a  is changed to  z  by means of the relation 

z = B(a0/a)
4 , [Eq. 65] 

as in Sect. 3.3-  Substitution of Eqs. 22, 36 and 58 into Eq. 56 

gives expressions similar to Eqs. 61 and 62: 

N(?N,TlN,0) = pN-2[?N
8Ll(pN) + (%

2- S|f)La(pH)], [Eq. 66] 

N(pN, ep, 0) = cos2cp Lx( pN) + (sin
2cp- cos2Cp) La(pN); [Eq. 67] 

the functions  1  and  L   are defined as follows: 
1       2 

I   .,  . - z 1  1 
L1(pN) = 2 j   dz e~* JQ(ipN P2 z"2) [Eq. 68a] 

L2(pN) = 2 j°° dz e~z Ja(ipNp2 z-2)/(ipNp2 z"2). [Eq. 68b] 

The results of the numerical calculation of L^      and  L2  are 

presented in Fig. 5 and Table 2.  Knowledge of these functions 

is sufficient to simplify the calculation of  N  from Eqs. 66 or 67. 

Figure 6 gives an impression of the surface  N( Ej , TU, 0)  for 

the Pierson-Moskowitz spectrum. 

4.4  Down-Wind and Cross-Wind Correlation 

From Figs. 4 and 6, the function  N(?vf> "\,>   °)  can only be 

studied qualitatively, because these figures try to depict a 

three-dimensional surface in a two-dimensional plane.  It is 

therefore worth considering two cross-sections of  N(§„, T\  ,   0), 

namely the down-wind correlation function  N(i* , 0, 0)  and the 

cross-wind correlation function  N(0, ru, 0).  Formulae for these 

functions are readily obtained from Eqs. 61 and 66: 
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2.0 

Ljx) 

 La(x) 

1.0 

0 

40 

NORMALIZED  CORRELATION   DISTANCE 

FIG. 5    THE FUNCTIONS  Li(x)   AND  L2(x) 

TABLE 2    SAMPLE VALUES OF   Li   AND  L- 

X Ljx) L,(x) 

0 2.000000 1.000000 

1 1.683109 0.910138 
2 1.207823 0.760491 
3 0.763871 0.606300 
4 0.410733 0.466143 
3 0.130207 0.346600 
6 -0.023481 0.248841 
7 -0.132343 0.171491 
8 -0.186940 0.112086 
9 -0.203923 0.067769 

10 -0.195557 0.035761 

11 -0.172261 0.013310 
12 -0.141342 -0.001208 
13 -0.108166 -0.010239 
14 -0.075907 -0.013168 
IS -0.046841 -0.017131 
16 -0.022416 -0.017162 
17 -0.002859 -0.013920 
18 0.011061 -0.013957 
19 0.020852 -0.011660 
20 0.028004 -0 .009303 

21 0.031476 -0.007071 
22 0.031200 -0.005OS8 
23 0.029420 -0.003309 
24 0.027953 -0.001871 
23 0.023396 -0.000733 
26 0.019119 0.000152 
27 0.016490 0.000777 
28 0.010976 0.001198 
29 0.008360 0.001439 
30 0.004846 0.001337 

31 0.001924 0.001578 
32 0.000640 0.001493 
33 -0.002739 0.001378 
34 -0.00 2500 0.001213 
33 -O. 003234 0.001042 
36 -0.003968 0.000861 
37 -0.003838 0.000684 
38 -0.003708 0.000318 
39 -0.003743 0.000369 
40 -0.003778 0.000237 
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a) Neumann   Spectrum 

N(?N, 0 ,0)   - K1(5N) -M^) [Eq.   69a] 

N(0,  T^ ,0)   =  KgCr^)   . [Eq.    69b] 

b) Pierson-Moskowitz Spectrum 

N(?N, 0,0) = L1(?N) -L2UN) [Eq. 70a] 

N(0, r^ ,0) = ^(1^) . [Eq. 70b] 

The corresponding curves and the difference between them are 

presented in Figs. 7 and 8.  We note that the correlation in the 

cross-wind-direction [Fig. 8] is better than in the down-wind 

direction [Fig. 7]. 

4-5  Discussion 

The difference between the spatial correlation functions obtained 

from the two energy spectra under study is difficult to see from a 

comparison between Figs. 4 and 6.  This difference is therefore 

plotted in Fig. 9. 

A more quantitative idea about the differences can be obtained 

from Figs. 7 and 8.  The maximum value turns out to be about 

0.1226, occurring at  £., = 5, TVr = 0. 

The fact that the correlation distance could be normalized with 

respect to the wind speed confirms the conclusion reached for 

the time-correlation function, namely that the fully-developed 

sea changes only its scale, and not its shape, when the wind speed 

is changed and a new equilibrium is found. 
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  Neumann Spectrum 

  Pierson-Moskowitz Spectrum 

  Difference 

V; 
NORMALIZED   DISTANCE   % N 

FIG. 7    SPATIAL CORRELATION FUNCTION OF W:ND-GENERATED OCEAN 
SURFACE WAVES IN THE DOWN-WiND DIRECT ON 
The ncmoi zed d stance equals   2g/U    t;mes *he ac*ual d s'ance 

Oj. N(0,  r^, 0) 

\ 

\ 

\ 

\ 

0 

-0.5- 

  Neumann Spectrum 

  Pierson-Moskowitz Spectrum 

  Difference 

2 4 6 8 10  "  

NORMALIZED  DISTANCE T1N 

FIG. 8    SPATIAL CORRELATION FUNCTiON OF WIND- GENERATED OCEAN 
SURFACE WAVES IN THE CROSS-W:ND DIRECTION 
The no-mal zed co'rela'.on distance equals 2g/U2 t mes the ac+ual d;s*ance 
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CONCLUSIONS 

Wind-generated sea surface waves can be considered with good 

approximation as a Gaussian process  G(x, t), stationary in time, 

and homogeneous and anisotropic in space.  If the mean value of 

this process is set equal to zero, which can be done without loss 

of generality, the correlation function 

h2N(£, T)= E[C(x,t) C(x+ p, t+r)] 

represents the process completely in a statistical sense. This 

correlation function plays an important role in the description 

of an underwater sound field that is scattered from the sea surface 

The most realistic way to describe the surface waves statistically 

is by using a surface wave energy spectrum  $(a, 9).  The 

correlation function  N(p,T) is related to the energy spectrum 

through a double Fourier integral, over wave frequency and wave 

direction.  The time-correlation function follows with  p = 0, 

the spatial-correlation function with j  =  0.  For two proposed 

spectral functions for fully-developed seas, the Neumann and 

the Pierson-Moskowitz spectra, we have calculated the correlation 

functions  N(0,T) and  N(p, 0)  on a digital computer.  It 

turned out, as was already indicated by Pierson and Moskowitz, 

who normalized the wave frequency and the fetch, that the scales 

could be normalized with respect to the wind speed:  normalized 

time equals real time divided by wind speed; normalized distance 

is proportional to real distance divided by the square of the 

wind speed.  This indicates that two fully-developed seas of 

infinite fetch, with different constant wind speeds, differ only 

in scale, and not in shape. 

As the Neumann and Pierson-Moskowitz spectra are only given as 

functions of wave frequency  a> but not of wave direction  0, 
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a relation between the directional spectrum and its isotropic 

mate had to be assumed.  We have chosen the frequently met (cos26)- 

connection, but a more adequate relation might be given by using 

cos 0 ,   where  p  is frequency-dependent. 

Although the correlation function  N(p, 0)  is essentially a 

function in two dimensions, it could be expressed in two 

functions that depend only on the modulus of  p.  This is an 

important result for the description of the underwater scattered 

sound field when it comes to numerical evaluation of its 

statistical properties:  instead of having to represent  N(p, 0)  as 

a matrix of H yM elements, two column vectors of size  M  will 

suffice.  A simple calculation then yields  N(p, 0) for each 

spatial point.  Sample values of these two functions are included 

in this report, for  M = 40. 

It is found that the Neumann and Pierson-Moskowitz spectra 

produce correlation functions that differ only quantitatively. 
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APPENDIX A 

TOTAL ENERGY IN A FULLY DEVELOPED SEA 

The total energy  E  is defined by Eq. 28 

E = I  da *(a). 
o 

[Eq. A.l] 

We shall now derive Eqs. 29 and 30. 

a)  Neumann Spectrum 

Substitution of Eq. 16 into Eq.A.l gives: 

E = C q   J" da a"6 exp(-2g2/cSU2), 

o 

and with 

z = g JT/ aU 

this becomes 

The integral has the value *• J TT ,   which has been found in 

Ref. 9 [p.337, no.(3.461.2)].  And so we have finally 

[Eq. A.2] 

[Eq. A.3] 

[Eq. A.4] 

E = 3c qy      (^) . [Eq. A.5] 

b)  Pierson-Moskowitz Spectrum 

We substitute Eq. 22 into Eq. A.l, and find: 

E = ag: d a exp -P(^) 
a 

-5 [Eq. A.6] 
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With  the   change   of  variables 

•a  *4 

z   -   pM) [Eq.   A.7] 

Eq. A.6   reduces   to 

CO 
2 : 1   a _£l     r     dz e"z —OS 

P    or 4      J 
E=±a_£_ dze""     =     —SS    , [Eq.   A.8] 

ro4    Jo 4ga0* 

or,   because   of      a0  = g/U , 
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APPENDIX B 

CALCULATION OF THE INTEGRAL  I ( a, p) 

We call  £p the angle made by the vector  p  with the  ^-axis, 

So we have: 

sin cp= vj p ,    coscp= 5/p [Eq.   B.l] 

Hence   Eq.    57   can  be   written   as 

_, nTT/2 
I1(a, p)=     d8cos

29cos[p cos(e-cp)], 
v 
-TT/2 

where  p' = a2 p/g . 

[Eq. B.2] 

Next we introduce the new variable  01 = 9 - cp, and drop the 

prime.  Then we obtain 

rr/2-cp 
I, ( 0, p) = d9cos2(9+tp)   cos(p' cos 9) , 

-TT/2-C 

and  with   the   identity 

[Eq.   B.3] 

cos2( 9+cp) = cos2 9 cos2
cp+sin2 9 sin2cp-^ sin ( 29) sin(2cp) [Eq.   B.4] 

I,      can  be   split   into   three   parts: 

oTT/2-cp 
Ii(Cj"?)=cos2cp dScos2 cos(p'cos B) 

-TT/2- cp 

+   sin2^ 
pir/2-cp 

d9sin2  9 cos (p'cos 9) 

— n/ 2 - ^ 

n/2-cp 
-   ^sin(2cp) d9 sin( 29) cos( p'cos9) 

-TT/2-cp 

[Eq.   B.5] 
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The three integrands have the period  TT, because  cos2 9, 

sin2 9, sin(2 9)  and  cos(p'cos9)  have that period.  And since we 

have to integrate over an interval of length  TT, we can take 

the limits from  -TT/2  to  +TT/2.  But then the third integral 

vanishes, as the integrand is odd.  And the value of the 

two remaining integrals is not changed if we integrate 

from  0  to  TT, instead of from  -TT/2  to  +TT/2.  Hence, we 

have : 

r r, Ij ( o, p) ~ cos2cp d9 cos2 9 cos( p'cos9)+sin2{p d9 sin2 9 cos( p' cos 9). 

[Eq. B.6] 

.•„2 Substitution of  cos2 9 = 1- sin 9  gives 

p TT n TT 
I, ( o,  p)=cos2cp    d9cos(p' cos 9) + ( sin2{p - cos2cp)   d0 sin2 9cos( p'cos 0) 

[Eq. B.7] 

The integrals are readily evaluated with tables [see Ref. 9j 

pp.402-403, nos.18 and 21]: 

I
1(C7, p*)= TT cos

2cp JQ( p ) + (sin cp - cos: 
\(P') 

[Eq. B.8 

With Eq. B.l and  p' = C2p/g into this formula, Eq. 58 follows. 
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